Sustainability at Trouw Nutrition -

Sara Cuesta, Sustainability Manager Harmen van Laar, Researcher Ruminant Modeling Neil Ferguson, Manager Modeling Science Claire Beckett, Dairy Technical Support

Nuterra: Focus Areas

- **1. Sourcing of feed ingredients**
- 2. Development of nutritional solutions
- 3. On Site production of feeds and feed ingredients
- 4. Distribution of finished products

Emissions per kg edible protein

a Nutreco company

Carbon Footprints for Food of Animal Production (*Flachowsky & Hachenberg, 2009*)

Efficiency:

Wageningen University & Research (Mollenhorst & de Haas, March 2019)

- Breeding reduces environmental impacts of animal products by about 1% per year.
- Without specific selection on environmental traits, but as an indirect response of the current breeding goals for each species, which is a combination of health, growth, and (feed) efficiency.
- For dairy cattle, with the current breeding goal, methane production per cow per day increases, but methane intensity (i.e. methane production per kg milk) decreases.

Efficiency: Feeding programs, longevity, nutrient efficiency, rumen efficiency, additives, reproductive

Examples for Trouw Nutrition

Life Cycle Assessments for new innovations & customer production systems NutriOpt: Feed analysis & production models

Examples for Trouw Nutrition Ireland

Grain sustainability study & LCA On Farm feed Programs incl new Beef Efficiency Model GrassWatch Additives: Rumen efficiency, Ammonia Reduction....

NutriOpt Sustainability Module

Life Cycle Assessment

• Methodology to investigate the environmental impact of products and supply chains. These methods give insights in possible improvements in the supply chain.

Poultry Trial; Sustainability Assestment Conventional v Split Feeding System

ISA brown laying hens:

- Conventional single diet from 91 – 94 weeks
- Same hens split-feeding diet from 95 – 98 weeks

Source: De Los Mozos Garcia et al., 2015

Optimized feeding system reduces emissions 10-25%

Environmental impact (per tonne of eggs)	Baseline	Split- feeding	Reduction impact split-feeding vs. Baseline (%)		0	-10	-15	-20	-25
Greenhouse Gas Emissions	420	379	10*	Greenhouse Gas Emissions (kg CO ₂ eq.)					
NH3 (ka NH3)	3	2	23	NH3 (Kg NH3)					
Energy Use (MJ)	1711	1669	2	P-excretion (kg P)					
Eutrophication fresh water (kg P eq.)	0.2	0.1	23	Eutrophication fresh water (kg P eq.)					
Eutrophication marine water (kg N eq.)	1.7	1.5	12	Eutrophication marine water (kg N eq.)					
Acidification (kg SO ₂ eq.)	7.4	6.5	12	Acidification (kg SO ₂ eq.)					

Grain Management Analysis

Sustainability Study

CO2 Emissions – Kg CO2 /tonne Grain Stored

Kg CO2 - Electical Energy - Aeration

êÅ

- Kg CO2 Electrical Energy Drier
- Kg CO2 Diesel Fuel (Well to Tank)
- Kg CO2 Liquid Preservative
- Total Kg CO2/ tonne

Fattening pigs inputs

	Baseline		Innovation		Baseline	Innovation	Baseline	Innovation	Baseline	Innovation
	Starting weight (kg)	Finishing weight (kg)	Starting weight (kg)	Finishing weight (kg)	Mortality	rates (%)	Feed inta	ke (kg/day)	Days	/phase
Growing pigs Finishing pigs	25	40	25	40	2,00	2,00	1,2	1,2	28	28
phase 1 Finishing pigs	40	63,4	40	66,4	0,50	0,50	2,0	2,1	28	28
phase 2	63,4	103,9	66,4	109,4	0,10	0,10	2,55	2,8	42	42
Total/Average	25	103.0	25	109.4	2.60	2 60	1 00	1 / 1	08	08

Environmental Impact Assessment

Impact Measure	Unit	Baseline	Innovation	relative impact innovation (baseline = 100%)
Greenhouse Gas Emissions, incl Land Use	kg CO ₂ eq.	4708	2163	46%
Greenhouse Gas Emissions, excl Land Use	kg CO ₂ eq.	1862	913	49%
Energy Use	MJ	11028	5999	54%
Land Use	m ²	4029	1769	44%
Eutrophication fresh water, on farm	kg P eq.	0,164	0,011	6%
Eutrophication fresh water, total	kg P eq.	1,230	0,479	39%
Eutrophication marine, on farm	kg N eq.	1,799	0,172	10%
Eutrophication marine, total	kg N eq.	22,423	9,243	41%
Acidification, on farm	kg SO ₂ eq.	12,93	1,23	10%
Acidification, total	kg SO ₂ eq.	32,53	10,19	31%

GHG results

a Nutreco company

GrassVatch trouw nutrition

a Nutreco company

Application of NutriOpt at Grass

Average weekly grass CP % 2017 - 2019

Average weekly grass NFEPB g/kgDM 2017 - 2019

Overall conclusions

To reduce the emissions in animal production a concerted approach is required combining: animal breeding, improved nutritional and farm management and use of additives.

Challenge how to measure and monitor above

